Skip to content
  • Home
  • About
    • People
    • Partners
    • Contact
  • Research
    • Research Outputs
  • Opportunities
  • Blog
Menu
  • Home
  • About
    • People
    • Partners
    • Contact
  • Research
    • Research Outputs
  • Opportunities
  • Blog
Back to all

Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts

  • August 23, 2021
Type

Journal Articles

Categories
Biomanufacturing Cell-Free Protein Synthesis Global Challenges Molecular Diagnostic Assays

Arce, A., Guzman Chavez, F., Gandini, C., Puig, J., Matute, T., Haseloff, J., Dalchau, N., Molloy, J., Pardee, K., & Federici, F. (2021). Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. In Frontiers in Bioengineering and Biotechnology (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fbioe.2021.727584

Go to Output
ZIKV Sensor

Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.

Previous
Next

Project

Loading...

OBL Contributors

Loading...

Dr Fernan Federici

Anibal Arce

Dr Jenny Molloy

Dr Chiara Gandini

You might also enjoy

Loading...
Harry submitting thesis - landscape

Congratulations to Harry Akligoh on submitting his MPhil thesis!

Read More
Bacterial cellulose culture

Bacterial cellulose production for antimicrobial peptide immobilisation

Read More
1 2 … 11 Next »

quick links

  • Home
  • Research
  • News
  • Contact

FOLLOW & LIKE US ON

  • Twitter
  • LinkedIn
  • Facebook
  • YouTube

NEWSLETTER

Sign up for emails to get the scoop on news, updates and more.

Subscribe Now

Privacy Policy | Cookie Policy | Disclaimer

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok